
C L A S S E S A N D
O B J E C T S :

O V E R V I E W O F O O P (O B J E C T
O R I E N T E D P R O G R A M M I N G)
• Python is an object-oriented programming language, which means that it provides

features that support object-oriented programming (OOP).

• Object-oriented programming has its roots in the 1960s, but it wasn’t until the mid 1990s

that it became the main programming paradigm used in the creation of new software.

• It was developed as a way to handle the rapidly increasing size and complexity of software

systems, and to make it easier to modify these large and complex systems over time. Up

to this point we have been writing programs using a procedural programming paradigm.

• In procedural programming the focus is on writing functions or procedures which operate

on data. In object-oriented programming the focus is on the creation of objects which

contain both data and functionality together.

O V E R V I E W O F O O P (O B J E C T O R I E N T E D P R O G R A M M I N G) :

• a.Class: A user-defined prototype for an object that defines a set of attributes that

characterize any object of the class. The attributes are data members (class variables and

instance variables) and methods, accessed via dot notation.

• b. Class variable: A variable that is shared by all instances of a class. Class variables are

defined within a class but outside any of the class's methods. Class variables are not used

as frequently as instance variables are.

• c. Data member: A class variable or instance variable that holds data associated with a

class and its objects.

• d. Function overloading: The assignment of more than one behavior to a particular

function. The operation performed varies by the types of objects or arguments involved.

• e. Instance variable: A variable that is defined inside a method and belongs only to the

current instance of a class.

• f. Inheritance: The transfer of the characteristics of a class to other classes that are

derived from it.

• g. Instance: An individual object of a certain class. An object obj that belongs to a

class Circle, for example, is an instance of the class Circle.

• h. Instantiation: The creation of an instance of a class.

• i. Method : A special kind of function that is defined in a class definition.

• j. Object: A unique instance of a data structure that is defined by its class. An object

comprises both data members (class variables and instance variables) and methods.

• k. Operator overloading: The assignment of more than one function to a particular

operator.

C L A S S D E F I N I T I O N
• The class statement creates a new class definition. The name of the class immediately follows

the keyword class followed by a colon as follows-

• The variable empCount is a class variable whose value is shared among all the instances of a in

this class. This can be accessed as Employee.empCount from inside the class or outside the class.

• The first method init () is a special method, which is called class constructor or initialization

method that Python calls when you create a new instance of this class.

• You declare other class methods like normal functions with the exception that the first

argument to each method is self. Python adds the self argument to the list for you; you do not

need to include it when you call the methods.

C R E A T I N G O B J E C T S
• To create instances of a class, you call the class using class name and pass inwhatever arguments

its init method accepts.

• This would create first object of Employee class emp1 = Employee("Zara", 2000)

• This would create second object of Employee class emp2 = Employee("Manni", 5000)

• Accessing Attributes

• You access the object's attributes using the dot operator with object. Class variable would be

accessed using class name as follows-

• emp1.displayEmployee() emp2.displayEmployee()

• print ("Total Employee %d" % Employee.empCount)

I N S T A N C E S A S A R G U M E N T S
• Instance variables are always prefixed with the reserved word self. They are typically introduced

and initialized in a constructor method named init .

• In the following example, the variables self.name and self.grades are instance variables,

whereas the variable NUM_GRADES is a class variable:

• Here “self” is a instance and “name” is a argument

• The PVM automatically calls the constructor method when the programmer requests a new instance of the

class, as follows:

• s = Student('Mary')

• The constructor method always expects at least one argument, self. When the method is called, the object

being instantiated is passed here and thus is bound to self throughout the code. Other arguments may be

given to supply initial values for the object’s data.

I N S T A N C E S A S R E T U R N V A L U E S

B U I LT- I N C L A S S A T T R I B U T E S
• Every Python class keeps the following built-in attributes and they can be accessed

• using dot operator like any other attribute −

• • dict : Dictionary containing the class's namespace.

• • doc : Class documentation string or none, if undefined.

• • name : Class name.

• • module : Module name in which the class is defined. This attribute is " main " in interactive

mode.

• • bases : A possibly empty tuple containing the base classes, in the order of their occurrence in

the base class list.

• For the above class let us try to access all these attributes-

I N H E R I T A N C E
• Instead of starting from a scratch, you can create a class by deriving it from a pre- existing class

by listing the parent class in parentheses after the new class name.

• The child class inherits the attributes of its parent class, and you can use those attributes as if

they were defined In the child class. A child class can also override data members and methods

from the parent.

• In a similar way, you can drive a class from multiple parent classes as follows-

• You can use issubclass() or isinstance() functions to check a relationship of two classes and

instances.

• The issubclass(sub, sup) boolean function returns True, if the given subclass sub is indeed a

subclass of the superclass sup.

• The isinstance(obj, Class) boolean function returns True, if obj is an instance of class Class or is

an instance of a subclass of Class.

M E T H O D O V E R R I D I N G
• You can always override your parent class methods. One reason for overriding parent's methods

is that you may want special or different functionality in your subclass.

D A TA E N C A P S U L A T I O N
• Simplifying the script by identifying the repeated code and placing it in a function. This is called

’encapsulation’.

• Encapsulation is the process of wrapping a piece of code in a function, allowing you to take

advantage of all the things functions are good for.

• Generalization means taking something specific, such as printing the multiples of 2, and making

it more general, such as printing the multiples of any integer. This function encapsulates the

previous loop and generalizes it to print multiples of n:

• With the argument 4, the output is:

• By now you can probably guess how to print a multiplication table—by calling print multiples

repeatedly with different arguments. In fact, we can use another loop:

• By now you can probably guess how to print a multiplication table—by calling print multiples

repeatedly with different arguments. In fact, we can use another loop:

D A T A H I D I N G
• An object's attributes may or may not be visible outside the class definition. You need to name

attributes with a double underscore prefix, and those attributes then will not be directly visible

to outsiders.

M O D U L E S : I M P O R T I N G M O D U L E
• A module allows you to logically organize your Python code. Grouping related code into a module

makes the code easier to understand and use. A module is a Python object with arbitrarily

named attributes that you can bind and reference.

• Simply, a module is a file consisting of Python code. A module can define functions, classes and

variables. A module can also include runnable code.

• Example

• The Python code for a module named a name normally resides in a file namedaname.py. Here is

an example of a simple module, support.py

C R E A T I N G A N D E X P L O R I N G M O D U L E S
• The import Statement

• You can use any Python source file as a module by executing an import statement in some other

Python source file. The import has the following syntax-

• When the interpreter encounters an import statement, it imports the module if the module is

present in the search path. A search path is a list of directories that the interpreter searches

before importing a module. For example, to import the module hello.py, you need to put the

following command at the top of the script

• Import module1[, module2[,... moduleN]

• When the interpreter encounters an import statement, it imports the module if the module is

present in the search path. A search path is a list of directories that the interpreter searches

before importing a module. For example, to import the module hello.py, you need to put the
following command at the top of the script-

• Import module support import support

• # Now you can call defined function that module as follows support.print_func("Zara")

M A T H M O D U L E
• This module is always available. It provides access to the mathematical functions defined by the C standard.

• These functions cannot be used with complex numbers; use the functions of the same name from the cmath module if you
require support for complex numbers. The distinction between functions which support complex numbers and those which don’t
is made since most users do not want to learn quite as much mathematics as required to understand complex numbers.

• Receiving an exception instead of a complex result allows earlier detection of the unexpected complex number used as a
parameter, so that the programmer can determine how and why it was generated in the first place.

• The following functions are provided by this module. Except when explicitly noted otherwise, all return values are floats.

• (a) Number-theoretic and representation functions

• math.ceil(x)

• Return the ceiling of x as a float, the smallest integer value greater than or equal to x.

• math.copysign(x, y)

• Return x with the sign of y. On a platform that supports signed zeros, copysign(1.0, - 0.0) returns -1.0.

• New in version 2.6.

• math.fabs(x)

• Return the absolute value of x.

• math.factorial(x)

• Return x factorial. Raises ValueError if x is not integral or is negative.

• New in version 2.6.

• math.floor(x) Return the floor of x as a float, the largest integer value less than or equal to x.

• math.fmod(x, y)

• Return fmod(x, y), as defined by the platform C library. Note that the Python
expression x % y may not return the same result. The intent of the C standard is

• that fmod(x, y) be exactly (mathematically; to infinite precision) equal to x - n*y for
some integer n such that the result has the same sign as x and magnitude less than
abs(y).

• Python’s x % y returns a result with the sign of y instead, and may not be exactly
computable for float arguments. For example, fmod(-1e-100, 1e100) is -1e-100, but
the result of Python’s - 1e-100 % 1e100 is 1e100-1e-100, which cannot be
represented exactly as a float, and rounds to the surprising 1e100. For this reason,
function fmod() is generally preferred when working with floats, while Python’s x % y
is preferred when working with integers.

• math.frexp(x)

R A N D O M M O D U L E
• This module implements pseudo-random number generators for various distributions. For

integers, there is uniform selection from a range. For sequences, there is uniform selection of a

random element, a function to generate a random permutation of a list in-

T I M E M O D U L E

	Slide 1: Classes and Objects:
	Slide 2: Overview of OOP (Object Oriented Programming)
	Slide 3: Overview of OOP (Object Oriented Programming):
	Slide 4
	Slide 5: Class Definition
	Slide 6
	Slide 7: Creating Objects
	Slide 8: Instances as Arguments
	Slide 9
	Slide 10: Instances as return values
	Slide 11: Built-in Class Attributes
	Slide 12
	Slide 13: Inheritance
	Slide 14
	Slide 15
	Slide 16: Method Overriding
	Slide 17: Data Encapsulation
	Slide 18
	Slide 19: Data Hiding
	Slide 20
	Slide 21: Modules: Importing module
	Slide 22: Creating and exploring modules
	Slide 23: Math module
	Slide 24
	Slide 25: Random module
	Slide 26: Time module
	Slide 27

